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We consider the game problem [l - 41 of the “soft” (with respect to coordinates 

and velocities) contact of two material points subjected to the action of given 
forces of attraction to a fixed center and to the action of control forces. The 

given forces are proportional to the distances of the points from the center or 
are equal to zero, while the control forces are arbitrary in direction and bounded 
in momentum. The first and the second points are treated as the minimizing 

and the maximizing players in a game where the payoff is the time upto the 
soft contact. In the process of solving the problem the whole space of game pos- 
itions is divided into two regions. In the first region we find the solution of the 

minimax problem and we synthesize three functions of the position: the optimal 

controls of the first and second players and the time upto soft contact In the 

second region we synthesize the second player’s control allowing him to avoid 
the soft contact under any action of the first player, 

1. Let the equations of motion of the system have the form 

5’ = y, y’ = - k2x + u + v (1.1) 

p.-=-_lu/, v.=--Iv\, p>o, Y>O 

where 5, y, U, u are three-dimensional vectors, 1x1, 1~1, 1~1, Iv1 are their Euclidean 
moduli, while p and Y are nonnegative numbers subject to the phase constraints p > 
> 0,~ > c) Equations (1.1) can be interpreted as the equations of the relative motion 

of two material points with masses ml and ms,whose radius-vectors relative to a fixed 
center 0 equal F-~ and r2, while the points at which the given forces F, = - m,k”r,, 
Fa = - rn&2r2 and the control forces fi = mlu, jz = - m$.J act are restricted by 

the impulse constraints 

In Eqs. (1.1). 5 = 7-l - I’2, y = r.1 - r2 , and the constant k: > (_I are assumed non- 
negative. 

We introduce into consideration the three vectors 

U’(r) ZZZ [Xi (t), z/i (r - O), p (T - O), v (z - O)l 

X!")(T) = [Xi(T), ZJi(Z- ct)+- Vii, p(t- O), V(t -O)- jYl/l = 
= \CCp (q, yp (z}, $2) (z), .(?f (t)] 
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ifi (T) :-: [“$9 (T), !/i(z) (1) -I- Ill;, [l(‘)(r) - j [11 j, 1.c.)) (t)J -2. (I 2) 
zzz [&%lf(~), ,J@” (x), tL(“,‘f (T) 

* 
y(2.11 (T)j 

L 

These vectors have the following meaning. The first of them, u (T) is the left limit as 
t -+ z - 0 of a certain solution of system (1.1) under finite I/. I‘ and such that for 

t < 7 the solution is continuous and differentiable for almost all t on the half-interval 

t s (‘G -- or, ‘6), F&C) The vector w(~)is called a game position at / : r,and in 
order that the initial value w (0) be a position we ascribe to it a small ( f: 1 I-P. 0)) 
prehistory with u ( t) : c (t) ~~ (1 The vector r.&) (r) represents the result of the 

second point’s (second player’s) impulse actions u (T) v,6. while the vector u*‘? 1) (r) 
represents the image of the vector z@) (r), obtained as the result of the first point’s 

(first player’s) impulse control II (uJ~“) (t)) =- 1116. The index i 1, 2: f_’ indicates 
the projection of the vectors I> !I. 11r.v~ onto the fixed axes, We shall omit the argument 

z when this does not give difficulty in comprehension. 
Let the pair of controls fr& (II’(~)), u (I(:, V)], Y (UJ) be such that for t > 0 it generates 

a trajectory w (1 ;>, 0, {Iri (~a(~‘). 71 (u., l’) I, I: (w)), w (0)) which for almost all 
t satisfies system (1.1) together with the phase estimates v ‘z 0: 11 > iI.is everyw’nere 

rrght continuous in d and has a finite number of jumps in accordance with formulas 

(1.3). Such a control pair and trajectory are said to be admissible and we shall solve the 
problem only in this class. The notation ]u (&l)). rl (~7, r.)] denotes that the first 
player can form either the control II (U,(Z)) or, for a finite 1: (u?): the control (1 (IC, uf7 

i.e. the second player is discriminated against. Let us state the problem of sofi. (2’ 

=y -- 0)contact. 

Definition 1. If the vector UT(~) (T) r{; A?I, [ Ix 1 z (J] and if there exists an im- 
pulse control 21 (z~.i~f) 14, (&zj) d which makes the vector $2.1) (T) vanish, then 

we say that ~(2) (11 and -r are the vector and the instant of contact respectively. We 

can verify that when the relations 

1.x (T){ :- 0, 1’ (t) - 2’ (r) - 1g (r)] I> 0 

are fulfilled, any admissible (v (r) - Iyr/ ;> 0) vector W(%)(T) corresponds to a con- 
tact. On the other hand, when the relations 

are fulfilled the v~~~~r)si (‘* 

!i (r) - 2’ (rf - ]Y (rf 1 < 0 

?d2) (, !, i + 0) = Ixi!) (T), !/I?) (t) :-= !/i (T) :- v,yJl q /, p,(@ (T), Y(?) (T) == o] 

11:(2) (1 ,/I / 7: 0; _z I,, (3 (T), 1 p: (7) j = 2’; @, c 0, p(2) (a), v@: (T) == 01 , 

are not vectors of contact. This means that the second player cannot avoid choosing a 
vector of contact (cannot avoid contact) if and only if the position 

~1 (r) ‘1 1 ,I/ / Ix] :- C); }t - Y - I!// > 01 

In this connection we name ilil the game termination set. 
We pose two fundamental conflict problems. 
Problem 1. Find the controfs u0 (w, u), r;’ (w] for which the time T [u, z:] of 

the first hitting of the trajectory onto84 satisfies the estimates 

T Ius, u] CC T iu’, ~“1 < T lu, ~“1 

The collection of positions for which a solution of Problem 3 exists forms a set Iv (u,). 
Problem 2. Find uo(w) such that the trajectory w (t, (u, Ug (w):, w (O))uoes 
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not hit onto Mfor t E [O, ml and for any control U. 
The conditions for the existence of u,, (w) delineate a set w,, (W). 

2. By E we denote the difference p - v , while by ja, ja, ju we denote the right 
unit triple of basis vectors. For [z[ # 0 the basis vector j, is parallel to the vector 
5, the basis vector jP is directed along the vector Y” - the projection of vector y onto 
a plane orthogonal to t.The basis vector j, completes the triple. If Ya = 0, then 
i5, j, are arbitrary. If 1x1 = 0, then the whole triple is arbitrary. The projections of 
any vector e onto the basis vectors of the triple are denoted e,, e,?, eY. The results of 

[l, 41 suggest forming the impulse control 

u(,) (w(s)) = a, (w(s)) Sj a - yf)6j,q = pcl) 6 (2.1) 

Here IV, (Wc2)) is the smallest root of the equation 

cP (t(,@), 1) z E -~(Yc,z’)” + h2 - l/(Yp’ + h)2 + k2 1 z I2 = 0 (2.2) 

on the segment c [A2 < E2 - Yp2]. When k > 0, we can obtain k = 1 by changing 
the scales of the variables. Therefore, in what follows we shall consider only the two 
distinct cases: k zz 1, k = 0. To abbreviate the notation we assume that wc2) = W. 

As we shall see subsequently (Lemma 3.2), the assumption that u (w) = VI 6 = 0 
(zd2) = w)does not affect the possibility of forming a control u(i) (w(s)) for ~(2) # w. 

Let us divide the whole position space Winto the following regions. for the cases 

/;=1,k=O: 

D(l) [ 12 (w, k = 1) = R(l) = ~-1/y2+52+21J:Iyp>O; I~I>Ol 
y2= Iy12, 39= ]x12 

J)(O) = DW) [R (w, k=O)=R@‘)=b- IyI>O; 1x1 >ol u 

u D(o.2) [R(o) = yp = 0; ycc < 0; 1x1 > 01 

ql) = w \ [D(l) u MI = D(1) [R(l) (w) < 01 

Dcoj = w \ [D(O) u Ml = D(o,l) tR”) -C 01 U 

U DC, 2j [R(o) = 0; Iyl > 0; Ya idi/ IY I > 01 u 

u’D~,,~, [R(o) = yp = 0; Ya > 0; 1x1 > 01 

L e m m a 2. 1 contains four assertions. 

2. 1. 1. When w E D(*),(O), Eq. (2.2) has the roots h, (w, ,$ = 1) = k(t) (w), 
At (w, k = 0) = A(o the segment C [J.s 6 Ee - Yps]. 

2.1.1. These roots are given by the formulas 

a(l) (Z/j) r= (Yaa@) - J//j2 ((,S(‘))” + Ya2X2 - X”I;“)) Q-l - Yx 

2,sO) zz E” + a!2 - ys, 4 = E2 - Yx2 (2.3) 

h(o) (w) = - I/,((', + yl)" - y?")(E + y&l, w E Dcosl) 

h(n) (20) = 0, zu E’ D’o. 2) 

2.1.3. The estimates 

h(i) (?P) < - yay3 ( 1 z I + z/p)-’ = A2 (47 
h(O) (20) < 0 (2.4) 

are valid. 



2.1.4. If the controls ~(1)~ (0) (w) =.- 0, then the controls ~4.~~) (w) take the trajec- 
tory onto set Af in the times 

1’(l) (w) = T ~u~,~(w), 01 =- 37; -t arccos (~‘1’ (p(iJ)a -f- a?) -‘1~) (2.5) 

‘(“J (w) :: T [u, (w), Q] :~: - jz/ ; pie) 

p(i) (?L‘) = v, -I- h(i) (/cl) p&JJ -= gr :_ j,(O) (~(3 

Before we start on the proof let us make the terminolo~ more precise. The equalities 

w(2.1) (0) = [X (Cl), yp.” z- ]J(k (0) (1)’ (o)), y;,“l’ c_. (,, g(?,I) ‘, - / p(1) 11 
(2.6) 

are valid on the pair u(1) (ZC, v), u (ZD) = 0. From what follows we shall see that 

when 2 > 0 the control u(r) (w) vanishes and the motion takes place as if the initial 

position were W’ (0) = z&i) (o).It is necessary to introduce such a stipulation because 
w(*.tJ (0) is not a position (*). We prove Lemma 2.1 in the order of the assertions made. 

2.1.1. Proof. Simple calculations permit us to establish the equalities 

f~(JJ,foJ jXY) = rn;rx,q tit., if = if u)), ii E (- .’ , -;- A) (Y.if 

I<(‘) (w) = cp (U’, hl (LII) = - !I,LYp ( Ii I + y,:,)-‘) (2.8) 

lb’)) (a.) = fp jtr , - ?f,) (2.9) 

We can also verify that h = A, (w) is the unique point of maximum, as is h = - y,when 
ys > 0. If y,; = 0, then the maximum of R”” (r~) is achieved on the segment yz + A < 
5 0. In the regions D(‘J. !(JJ we can establish also the estimates 

%! - !,(?J . () .~P 
.) (I’ (w, j: p 4’ - y;,“) .< ‘1 (2.10) 

L2 (co) .< 51 - !I,‘? 

Equality (2.7) guarantees the existence of a root of Eq, (2.2) on the straight line h E 
f- x,, i_ t%). Equalities (2-S), (2.9) together with estimates (2. IO), show that when 

@rJy 0~) > 0 the segment “c’ ‘gcontains not less than two roots, while when RtlJ, Cr’J = 0 

not less than one root. 

2.1.1. Proof. The replacement p = h -!- &and simple manipulations allow us 

to obtain corollaries of Eq. (2.2) for k = 1, 0 in the form 

(k’ - y,) i”? - “,\(lJ,J~,p + 52 --~ (“(1)) = 0 (2.11) 

(t” - ?,,‘?) p? - (EJ - g!) y,p - If’:! (p - y?) = 0 (2.12f 

When R!tJ, fnJ > 0 Eqs. (2.11) and (2.12) have precisely two roots each and the smallest 
ones of each pair are given by formulas (2.3). The arguments used in the proof of asser- 

tion X.1.1 convince us that these pairs of roots satisfy Eq. (2.2) when k = i,O.If fi”j= 

= 0, then (2.2) and (2.11) have the unique root h”J (w) = h, (w). If R”” = y.s = 0, then 
(2.12) turns into an identity, however, Eq. (2.2) takes the form 

4 - [ h I- 1 y, $- h I = 0 

and its smallest root A(“) (w) = 0. 
2.x. 3. Proof. The estimates in 2.1.3. are simple corollaries of the preceding 

arguments. 

*) In what follows “the motion starting from the position ~‘~,t’ (w, u (w, u), v (w))” is to 
be understood in the sense that it takes place just as if it had started from the position 
W’ (0) ;= z@~‘J (Oj.This refinement extends to the whole article. 
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2.1.4. Proof. After realization of coneol u(t) (w) the motion starts from the 

position w(*.t) (0) given by formulas (2.6) and, for t> 0 takes place in accordance with 

the equations 
J/~~I=s(o)/1~(o)I, !21’=y1. Y, =-I51 

Yg = Yp = 0, yl) ((0 (L)) = 0 (k = 1) 
(2.13) 

~/IsI=J:(o)/I~(o)I, 151'=Yl<o? Y, =o 
(2.14) 

yI,=yp =o. 'L(1) (to (4) = 0 (k = 0) 

The trajectories of these equations realize the times T [uC1), 01 in accordance with (2.5). 

This completes the proof of Lemma 2.1. 

3, The scheme for the construction of the control uc, (w), used in [4] for the one - 

dimensional analog of the problem being considered here, can be generalized in a natu- 

ral way to n = 3 and leads to forming in the regions D(i), (“1 the impulse controls 

U(i) (to) = Vi (1) (M.) 6 = vys$(i)& + 2’ (ys -I- 1 J: 1 ) qlwjp 

uco) (w) = vlco) (~7) 6 = vy,~#Wj, + vy9$Wjp 

qJ1) = (y” + 9)-‘4 lp) = 1 y j-1 

Theorem 3. The controls ZJ(~) ,(i) (w) solve Problem 2 in the regions D(r), co), i.e. 

the inclusions 

U(l), (0) (4 E uo (4, % (0) (4 E wo 04 (3.1) 
are valid. 

Proof. It is obvious that the collection of possible vectors ~(2.1) (w) coincides, when 

a=uC1) (s,(w) with the collection of possible vectors z&t) (w(2) (w, v(t), (,,) (w))). There- 

tore; the vector ZD@) (zu, ucl), (,,) (~1)) can be considered to be the initial position and the 

first player’s possibilities at it can be discussed. We can directly verify the relations 

Jp. (0) (w) = R(‘)* (0) (w(*) (w, u(l), (,,) (w))) = p - V(Y(*‘)~ + k2.c2 < 0 

(R (1)* (O))’ = - ) u { - lp (O) (yJL, $ y;$.h,) < 0 

where (R(l), co)) are the right derivatives of the functions R(i). (0) by virtue of system 

(1.1) under a finite control U. For k = 1, 1x1 f 0 (3.3) becomes a strict inequality, 

while equality in (3.3)is achieved only in the case /i ( J: 1 = 0 by the control u = - my 
(m > 0) antiparallel to the velocity. The estimate (3.3) shows that the inclusion W 

V>%NEQ,,(NB~1 P is reserved for t > 0 .The proof is complete for k = 1 . 

For /i = Oestimate (3.3) ensures the inclusion r~ (t > 0: zc, w (0)) EDco,l) @ hj 
for w (0) C< Dco,i) (W). It remains to discuss the cases w (0) E L)co,*) (w), w (0) E 

E DCo.:r) (w). In the first case any control u, holding a position on the surfaceR(0) (w)= 

Z C), is antiparallel to vector ZJ and preserves the quantity yp Iz( / (yJ equal to the 

projection of vector 5 onto the normal to vector y, lying in the plane containing the 

vectors .r, y. In the second case this projection equals zero, but the admissible control 

u == - my preserves the inequality ya > 0 and the quantity 1x1 > 0 is not diminished. 

Thus, an admissible control, preserving the equality R(O) (w) = 0, cannot lead a tra- 

jectory onto fir. On the other hand, according to (3.3). any control u + - my (m>U) 
leads the trajectory into the region D Co,1) (w), whence it is also impossible to go onto 

?I .The proof of Theorem 3 is complete. Let us discuss the possibilities of the second 



player in the region D(r), (“1 (v). 

Le m ma 3, 1 contains three assertions. 

3.1.1. Any impulse control LJ _~_ vr6 preserves the inclusion w(z) C_ 1)(t), (11) 

3.1.2. The estimates 

are valid, becoming equalities only by the controls 

3.1.3. The equalities 

are valid for I: = c(t), (0) 

Proof. We carry it out only for the case k = 1, w E C”)a co) The ,remaining cases 

can be considered analogously. By qtlJ (u, p (1J3 !I”) > 0 we denote the partial derivative , 

of the function va (w, p) obtained after the substitution p = yA -j- h into the function 

cp (m, A) ; note that vyl > 0 is strictly positive for R(r) (w) > 0 We restrict ourselves 

only to the subcase KC’) (w) > 0 and we start to vary u = ~~6 from zero. Then the root 
variation hp(rI = pC1)(wf2) ) _ (l) p (w) changes, for small / ,+I 1, in accordance with the 

equation 
cpk’l (I(., $1)) hi-‘(l) = - ~ \‘I 1 - hy (“‘j VA - hy) (I(.) VF + 0 (II’, j VI 1) < 0 (3.6) 

The sum of the first-dimension terms are strictly negative for v16 # u(l) (n, u)). This 

sum vanishes only for II = v (l) (n, w), but here it is easily verified that the quantity 

0 (w, / ~1 I) also vanishes. Let the vector yI be finite and satisfy the relations 

vr + Jl), CO), J.2) (w, 6, vr) E C(1)’ (‘1) for 0 -< 0 < 1 

Let us assume to the contrary that 6po) (w, vl) > 0. From the relation vr =+ u(t), (‘)and 

from estimate (3.6) follows the bound 6p(l) ( W, f3v1) < Ofor sufficiently small 6. The 

latter bound, together with the contrary assumption, implies the existence of a number 

0 < 81 < 1 such that 8~‘~) (d2) (w, 0, IQ), ABv,) > 0 for any sufficiently small SO > 0. 

This inequality contradicts estimate (3.6) applied at the point ID”‘) (w, Or vl). Thus, we 

have proven estimate (3.4) and the first part of assertion 3.1.2. For I?r)> 0 the inclusion 

w(~) E DC’) is a consequence of the presence of the root h”’ (z’s)) = p’l) (ID(~)) - yc) 

This proves assertion 3.1.1. Equality (3.5) is verified by a substitution. The proof of 

Lemma 3.1 is complete. 

L e m m a 3. 2 contains two assertions. 

3.2.1. Any impulse control u = ~~6, preserving the inclusion ~(2.1) ELI_ D(r), (111, 

cannot violate the estimates 

p(l), (0) (u.(2 1)) ;a pm, (0) j&') 

which become strict equalities only for 

(3.1, -\ 



Gamt probltm of the contact of two material points 191 

u{(l), ~1 (w(2), r) = rql) (w(2), k = 1, 0), O<r<i 

3.2.2. The controls u (1). (0)) (w(s), r) preserve the quantities 

1$‘s co) @,F)) = }$‘, (0) (lc(s.‘) (J2), Ul(l)’ (0)) (J?), r))) 

I&i), (“) (@) = @* (“) (&i) @J”), ui(l). (0)) (w@), r))) 

for $) E c(l)* (1)) (7p). 

The proof is analogous to that of Lemma 3.1. 

In summary, Lemmas 3.1 and 3.2 establish the equality 

max, min, Ct.j [p(i), (“1 (u:(2, I)) - p(l)* (“1 (U’)] = 0 (3.8) 

where the minimum is sought on all U (w) which are impulsive and which preserve the 
inclusion ~01) F DOS (“),while the maximum, on all admissible controls 

U = v,6, v - lVll > 0. 

4. Thus, the control 

U(i) (J”) = Jr). (“)(,,(2)) = h(i)’ (0) (#) 6jz _ &jj?, J2) E C(l)S (“1 (4.1) 

has been formed in the region Cc:), (0). If however, at the position w E E(UV (0) the second 
player uses a finite control u (W), then w(“) = w, and a natural generalization of the 
impulse control Ucl) (w(Q) in this case is the control 

U(l)’ (“1 (UT, V) = UC’ (“I (20, U) ja - 7+j,s - u,j., (4.2) 

where ~2” (“I ( ’ ) u, u are the smallest roots of the equation 
-_. 

1 v 1 - 1/ up2 + uy2 + u,” - yx (v, + 2.4,) g-1 = 0 (4.3) 

Equation (4.3) admits of the obvious roots uzl, 1 = u,“, 1 = - u, and, furthermore, of 
the root u,~, 2 = 2 (u,E2- 1 ZJ / yxg) q-l-- u, when 1~1 4 - 2y,@, -2 1~1 yx2 > 0 
and the root ~,i, 2 = u when up = u, = 0. v, < 0. 

5. Let us begin the analysis of the case k = 1 and, unless we stipulate otherwise, 
we shall consider only this case. We introduce the notation 

The function T(i) (z(i) (w)) increases strictly monotonically with respect to the argument 
z(i) (w).However, according to Lemma 3.1 (Lemma 3.2) the second (first) player cannot 

increase (decrease) the quantity z(l) (w) and the function T(l) (z(l) (w)) by means of 
impulse controls. As a corollary of this it is natural to examine the consequences of im- 
pulse actions of the second and first players who at the initial instant have applied the 
impulse controls 

U(i) (7/', 0 &In < \.), 71((l)) (7rW, 0 < r < 1) = rz!(1) (5.2) 

and who for t > 0 apply the finite controls U, U. It is not diffirult to verify the validity 



of the equalities 

In formulas (5.3) we can consider the case 

w E cCi) [r/p2 + (P (20))” > O] fl [ ip! (w) > q (5.6) 

From (2.2), (5.1) - (5.4) it follows that the function z(t) (w) = z(t), (2, 1) (r&s9 1)) is 
the smallest root of the equation 

As a consequence of system (4,1), for the variables 5, zz, 23 we can obtain the diff- 
erential equations 

5’ = - 52, - 1111 i + 1 U1 /, &’ = - 1 - ZE2 + q2 i_ uIa + ulu (5.8) 

.zfl = - 22& i- UlP i- %P, r.$ = ZL 15 p-1, q = viLE\-' 

The right derivative of the function T(r) (~(1) (r&s* 1))) along the motion starting from 

the position w(sJ) has the form 

[T”’ (#I @)(2’ 1) ))I’ = (CKC / dz’) [z(l) (uw)]. 

[z’ (w’“* “‘)l” = P, (z&J)) + p, (w(Z, 0, u) + p, (w(2, 0, u) 

where P, (da l)) is a combination of terms not depending on the controls, ps (w(*. t), uf 
of terms depending only on u,whiIe P,fw (Z I), v) of terms depending only on u *To 

compute the indicated quantities we differentiate Eq. (5.5) with respect to time, and 
we obtain the equation 

(s(1) (J2’ 1) ))’ B (X.0) = (-- zJ2.1)). - 11, (10) (z!,, 1)). - iclp (10) ($*“‘)’ (5.9) 

6(U) = [- It, (20) - z(1) (20) /1/@(l) (?C))i f l] > 0 (5.10) 

The estimate (5.10) is a consequence of the assumption R(l) (zvf > 0. The equality 

Y, z (6 (z/;))-’ [H (W) --_i- (j&, + 3,) n] (kjl) 

icir (20) = 52, - IL, (zpZ - i&Z - 1) - ~iZ~Z,Z~ 

is a corollary of (5.9), (5.10) and (5.6). Simple calculations allow us to establish the 
estimate g& + 2, g 0 (5.12) 

while arguments analogous to those in the proofs of Lemmas 3.1, 3.2 establish the 
equality max, min, (uf {P, (urfz* 11, u) + P, (w@, l), u)] = 0 (5.13) 

From (5,12) follows the estimate 
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6, Theorem 6, Theequalities 

T lu”, uO] = T f[u(tt (w@)), ~(*),(O)(~, u)], ,(t’, :‘)(w, n)] = T(r)* ‘“‘(so), (‘I (w)) (6.1) 

[Q) (W’Q), u(l), (0) (w, ?I)] = ?A0 (w, Y) (6.2) 

@v (0) (w, n) -r-1 7y (w) 

‘If ” p (0) (w) = Iv” (w), n,,,, (9) (4 = wo (WI (6.3) 

follow from the inclusions w E D(l!, (0) (w) . From (6, I) it follows that the controls 
[u(,),u (0, (O)], ~(1)~ (0) solve Problem 1 in the regions t)(l)* (a) (W) with optimal times 
fY1). (0) (&h (0) (to)), while in the remaining part of the position space the second player 

can solve Problem 2 (of escape). 

Proof. Once again we restrict ourselves to the case k = 1. Because the function 
T(l) (z(l) (w)) is monotonic with respect to z(r) (w) and from Lemmas 3.1, 3.2, there 

follows the equality 

max,, minpt,,3 A7’(‘) = A7’ (w, U(I), uflf) = 0 (6.4) 

From (5.13) and (5.14) follows the equality 

maxu rein,(,) (T(r))’ = T(l)’ (w, U(t), 1)(1)) = - 1 (6.5) 

Equalities (6.4), (6.5) prove the equalities (6.1), (6.2) and the inclusion D”‘S (‘) E 
EtV” (w).Equalities (6.3) follow from the latter inclusion, from inclusion (3.4) and from 

the equality M U DC’)* (‘I lJ DC,), coj = W. The proof of Theorem 6 is complete. The 
case k = 0 can be treated analogously. 

Fig. 1. 

The optimal motion is shown in the Fig. 1. The vectors (0, A) = R and (0, B) = y 

represent the initial position and velocity. The vector u:r) = (B, B”‘) in sum with the 
vector y forms the vector y@) = (A, B”‘) - the result of the second player’s optimal 
actions. The vector (B@‘, B”*‘)) = u”) in sum with the vector y’“’ leads to the vector 

y’““’ directed along the vector (0, A). After this the optimal motion starts from the pos- 

ition We’,” and takes place along the fixed straight line (u, A) dnring a time 2”“. 
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We consider the problem of the equivalence of a certain system of ordinary diff- 

erential equations to a system of Lagrange equations. Wherever we do not ex - 

pressly say so, we have in mind sationary nonholonomic Chaplygin systems with 

linear constraints. The equations of motion of non-holonomic systems in the 

Routh form, Chaplygin in appearance, differ from the Lagrange equations of the 

second kind in the presence of additional terms (constraint reactions, nonholo- 

nomic terms). This fact hinders the extension of integration methods of equations 

of motion of hnlonomic systems to nonholonomic ones. The few attempts [l, 21 

to seek general methods for integrating the equations of nonholonomic mechanics 

were reduced to the transformation of the equations of motion to Lagrange form 

[3]. The equations of motion of nonholonomic systems have the form of Lagrange 

equations [l, 41 only in exceptional cases. 

The problem of determining the conditions which guarantee the equivalence 

of a given system of differential equations 

F; ((/I”, . . ..q.", 'il.... I 'I,,' , 'j19....'/,, l)=U (j = i,...,rf) (0.1) 

with the Lagrange system 
<I 0 

I,; (0) L u (I’=i..,..u) 
i 

I,j’ L 7-- 
dl d(I ) L”I, j 

(V. 2) 

where 0 is a certain function of qr’, . . . . q,,‘, ql, . . . . qT1, l,is a familiar one. 

Necessary and sufficient conditions (the Helmholtz conditions) were obtained in 

[5 - 71 on whose basis we can determine from the appearance of Eqs. (0.1) whe- 

ther each of these equations individually is a Lagrange equation relative to the 

function 0 called the IIelmholtz kinetic potential. It should be noted that the 

Helmholtz conditions applied by Chaplygin are usually not fulfilled for Routh 

equations [S, 91, nevertheless, in some cases, by combining these equations 

they can be replaced by an equivalent Lagrange system [S]. A theorem was proven 

in [lo] that the equations of motion of a mechanical system with linear nonint- 

egrable constraints 

wi = vi. + 2 ois (CJI~. . . , (I,,, /) ‘I,’ $- 11~ (‘I,, . . . 1 vi,. 0 = 0 (i = I,. . . , 1s < 10 

s- h-j-1 


