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We consider the game problem [1 - 4] of the "soft” {with respect to coordinates
and velocities) contact of two material points subjected to the action of given
forces of attraction to a fixed center and to the action of control forces, The
given forces are proportional to the distances of the points from the center or
are equal to zero, while the control forces are arbitrary in direction and bounded
in momentum, The first and the second points are treated as the minimizing
and the maximizing players in a game where the payoff is the time upto the
soft contact, In the process of solving the problem the whole space of game pos-
itions is divided into two regions, In the first region we find the solution of the
minimax problem and we synthesize three functions of the position; the optimal
controls of the first and second players and the time upto soft contact, In the
second region we synthesize the second player's control allowing him to avoid
the soft contact under any action of the first player,

1, Let the equations of motion of the system have the form
z =y, y = —kx +u-4v 1.1
p,':—}l&}, v'::—--'v[, }L}O, v>0

where 2, ¥, u, v are three-dimensional vectors, |z|, |y, |ul, lv| are their Euclidean

moduli, while p and v are nonnegative numbers subject to the phase constraints p >
> 0,v > U Equations (1.1) can be interpreted as the equations of the relative motion
of two material points with masses m, and my,whose radius~vectors relative to a fixed

center () equal r, and 7y, while the points at which the given forces F; = — mk*ry,
Fy, = — mok®ry and the control forces f, = myu, fo = — Mal act are restricted by
the impulse constraints <

uo——jluldt::u(t)>0 (1.2)

0
vo — Lg.lv]dtzv(t) >0
o

In Egs. (1,1), 2 = 1r; — T'g, ¥ = 't — T2, and the constant £ > () are assumed non-
negative,
We introduce into consideration the three vectors
w(t) = {2 (1), yi(t — 0), p(t—0) viv— 0y
w® (1) = [2; (1), ¥ (T —0) 4y, w(®—0), v(T—0)— vl =
= [2;® (1), y@ (v), p@ (1), v (7)]
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D (1) = |2 (1), 5@ () Ay 1O = [, OO = (1)
= {xg‘lfl)(t), 5‘{»;(2'” (1), pEY (1), v (1)}

These vectors have the following meaning, The first of them, w (7) is the left limit as
t — 1 — U of a certain solution of system (1,1) under finite u, ¢ and such that for
? <7 T the solution is continuous and differentiable for almost all ¢ on the half-interval
t= |t — &, 1), & >0 The vector w(t)is called a game position at { =: t,and in
order that the initial value w (0) be a position we ascribe to it a small { {7~ |—¢, U})
prehistory with u {¢) = v (f) = U The vector w® (1) represents the result of the
second point’s (second player's) impulse actions v (1) — v,8.while the vector 2 V) {1)
represents the image of the vector w® (t), obtained as the result of the first point's
(first player's) impulse control 1 (w'? (1)) == |,8, The index ; - 1, 2, 3 indicates
the projection of the vectors x, y. {t;. v, onto the fixed axes, We shall omit the argument
T when this does not give difficulty in comprehension,

Let the pair of controls {1 (10®), u {w, v)}, v () be such that for ¢ > 0 it generates
a trajectory 1 ({ > 0, {lu (w), u (w, v)l. v (w)}, w (U)) which for almost all
t satisfies system (1,1) together with the phase estimates v “» U, p > ()is everywhere
right continuous in ¢ and has a finite number of jumps in accordance with formulas
{1.3), Such a control pair and trajectory are said to be admissible and we shall solve the
problem only in this class, The notation {u (w2}, u (w, v)] denotes that the first
player can form either the control # (w®) or, for a finite ¢ {w), the control u {1, v),
i.e, the second player is discriminated against, Let us state the problem of soft (2 -
=y == U)contact,

Definition 1. If the vector w'® (1) &= M, [|x] =+ 0] and if there exists an im-
pulse control u (2 - p; (™) § which makes the vector y(2b (1) vanish, then
we say that w9 (1 and v are the vector and the instant of contact respectively, We
can verify that when the relations

b @ 0, @) —v () — Jy (©] >0
are fulfilled, any admissible (v (t) — |v,| > 0) vector w* )(T) corresponds to a con-
tact, On the other hand, when the relations
p@ 0 p @)=y @ — [y @] <0
are fulfilled, the vectors
w® (g ==0) = (2@ (v ), ,f)( )-‘— yi(T) vyl y L, p® (x), v (1) = 0]
w® (] = 0) = &), |2 ()= v //<’) =0, u@ (1), v& (1) = 0]

are not vectors of contact, This means that the second player cannot avoid choosing a
vector of contact (cannot avoid contact} if and only if the position
w ()~ Mz = 0 ) —v — [y] >» U]
In this connection we name M the game termination set,
We pose two fundamental conflict problems,
Problem 1, Find the controls u°(w, v), 1° (w) for which the time T [u, v} of
the first hitting of the trajectory onto M satisfies the estimates

Tlue, v << T lwe, vl << T {u, v°]

The collection of positions for which a solution of Problem 1 exists forms a set W (w).
Problem 2, Find v, (w) such that the wajectory w (¢, {u, ve (W)}, w (0)) does
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not hit onto M for ¢ & [0, oco] and for any control u.
The conditions for the existence of v, (w) delineate a set W, (w).

2. By § we denote the difference 4 — v, while by j,, ja, j, we denote the right
unit triple of basis vectors, For x| == O the basis vector j, is parallel to the vector
x, the basis vector jB is directed along the vector y® — the projection of vector y onto
a plane orthogonal to Z.The basis vector /, completes the triple, If y® = 0, then
Js, Jv are arbitrary, If |z| = O, then the whole triple is arbitrary, The projections of
any vector ¢ onto the basis vectors of the triple are denoted €q, €3, €. The results of
[1, 4] suggest forming the impulse control

uqy () = (W) ), — yPdj; = pwd (2.1)
Here A, (w®) is the smallest root of the equation

Q®, )=t —VEPE R — V@ LN+ E[zf=0 (2.2

on the segment ¢ [A* <C & — ya%l. when & > 0, we can obtain k& = 1 by changing
the scales of the variables, Therefore, in what follows we shall consider only the two
distinct cases; ; = 1, k = 0. To abbreviate the notation we assume that w'® = w.
As we shall see subsequently (Lemma 3, 2), the assumption that v (w) =v; § = 0
(w'® = w)does not affect the possibility of forming a control ugy (W®) for w® == w.
Let us divide the whole position space W into the following regions. for the cases
k= '1’ k = O:
DO (R, k=1)= RO =t — VP FF T 212y, >0 |2]>0]
y =P, == |z
D® = DOV [R (w, k=0)=R® =8¢ — [Jy|>0; |z| >0y
U D@2 [RO = yg = 0; yu << 0; Jz| > 0]
Dy = W\ [DW y M] = Dy, [R® (w) << 0]
Dy = W\ [DO® y M] = Dy, [RO <01y
UDw.g [R® = 0; [yl > 0; ys |z|,7 Iyl >0y
UDos [R® = yz = 0; yo > 0; |z| > 01

Lemma 2,1 contains four assertions,
2,1,1, When w &= DO, Eq, (2,2) has the roots A, (w, k = 1) = AV (w),
M (w, k= 0) = AO(w)on the segment C [A? <L & — y,?.

2.,1,1, These roots are given by the formulas

A () = (Yas® — VE O + v — 2N g7 — Vs

25D — E2 - 22 — 2, g==E8—y.? (2.3)
MO () = — Yo (G + ¥P — ¥ G+ ), w =DV
MO () =0, weD"?

2,1,3, The estimates
M () < — Ya¥s (|2 | 4+ ¥a) ™ = Ay (), MO (w)y<C 0 (2.4)

are valid,
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2.1.4, If the controls vt ) (w) == (), then the controls ug, (w) take the trajec-
tory onto set A in the times
I'D (w) = T [ug)(w), 0] = n + arccos (p) (pV)2 -+ a?) ) (2.5)

T® (w) = T luy (w), 0] = — |z|/ p®

PV (w) =y, - AV (w) p(“)) =y, - MO ()
Before we start on the proof let us make the terminology more precise, The equalities

weD (0) = [2(0), ¥ = pO O (@ (O), YT =0, BV E—full  (26)

are valid on the pair uy, {(w, v), v (w) = 0, From what follows we shall see that

when £ > 0 the control ¥, (w) vanishes and the motion takes place as if the initial

position were w' (0) = wD (0).1t is necessary to introduce such a stipulation because

w2V () is not a position (*), We prove Lemma 2,1 in the order of the assertions made.,
2.1.1, Proof, Simple calculations permit us to establish the equalities

12000 (w) = max,§ (v, k= 1,00, A€ {(—~, -+ ) 2.7
RO () = @ (0, Mo (@) = — y,55 (| 2|4y (2.8)
B ey = @ (0, — ¥,) (2.9
We can also verify that A = A, (w) is the unique point of maximum, as is A = — y,when

¥g > 0. If y, = 0, then the maximum of R () is achieved on the segment y, -+ & <
< 0.1In the regions D'V we can establish also the estimates
By 0, g, £ VE— g @.10)
Slo)CE -7
Equality (2.7) guarantees the existence of a root of Eq, (2.2) on the straight line 4 €
{— 20, -+ =). Equalities (2, 8), (2.9) together with estimates (2,10), show that when
R ) > ( the segment "¢ "contains not less than two roots, while when R** " = 0
not less than one root,
2.1,1, Proof, The replacement p = A -+ ¥, and simple manipulations allow us
to obtain corollaries of Eq, (2,2) for k = 1, 0 in the form
(82— 5,2) P 2O, p - @t — () =0 (2.41)
G- pP—E =y p— 18—y =0 (2.12)

When R (> 0 Eqs, (2.11) and (2,12) have precisely two roots each and the smallest
ones of each pair are given by formulas (2. 3), The arguments used in the proof of asser-
tion 2,1,1 convince us that these pairs of roots satisfy Eq, (2, 2) when k = 1,0.1f V=
=0, then (2. 2) and (2,11) have the unique root AV (w)= 1A, (w).1f R = y, = 0, then
(2.12) turns into an identity, however, Eq, (2,2) takes the form ‘

E— Al —ly, +4[=0
and its smallest root A (w) = 0.

2.1,3, Proof, The estimates in 2,1,3, are simple corollaries of the preceding
arguments,

*) In what follows "the motion starting from the position w'>V (w, u (w, v), v (w))" is to
be understood in the sense that it takes place just as if it had started from the position
w' (0) = w*V (0).This refinement extends to the whole article,
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2.1.4, Proof, Afterrealization of control u, (w) the motion starts from the
position 32V (0) given by formulas (2, 6) and, for > 0 takes place in accordance with
the equations

2/lal=c@ /2O (2| =v, v, =—|z]
(2.13)
Yy =y = 0, %y (w(@®)=0 (k=1

vp=1yg =0. gy (w0 (5) = 0 (k= 0)

The trajectories of these equations realize tie times T [u(l), 0] in accordance with (2, 5),
This completes the proof of Lemma 2,1,

3, The scheme for the construction of the control v, (w), used in [4] for the one -
dimensional analog of the problem being considered here, can be generalized in a natu-
ral way to n = 3 and leads to forming in the regions D), () the impulse controls

vy (W) = Vi (0) 8 = vy, pW8f, - v (ys -1 | z|) V&)
Vi) (W) = Vi (10) 8 = vy, p 8, 1- vyap®Bjg
YO = (g* 2 PO =y

Theorem 3, The controls ¥ 1) (&) solve Problem 2 in the regions Dyy), (), is €4
the inclusions
v, o @) Evew), D, o (0) E Wo (w) (3.1)
are valid,

Proof, Itis obvious that the collection of possible vectors g(21) (w) coincides, when
V=0 (@) with the collection of possible vectors w1 (w® (w, v(), (o) (w)))- There-
tore, the vector w® (w, vy, (o) (1)) can be considered to be the initial position and the
first player's possibilities at it can be discussed, We can directly verify the relations

] (3.2
RO () = BO© (0 1, v,y (@) = 1 — VGOFT RO =1 0)
RV Oy = —uf— 9P O (gu, + yaun) < 0 (3.3)

where (R(1): (0)) are the right derivatives of the functions R(). (0) by virtue of system
(1.1) under a finite control u. For k£ = 1, |z] =% 0(3.3) becomes a strict inequality,
while equality in (3, 3)is achieved only in the case £ |z | = 0 by the control u = — my
(m >> 0) antiparallel to the velocity, The estimate (3, 3) shows that the inclusion w
(t>(),u)E]_)u)' (w)P M is preserved for t > 0 .The proof is complete for & = 1,

For & = (estimate (3, 3) ensures the inclusion w (¢ >0, u, w (0)) EDpy E M
for w (U) &= D(p,1) (W) It remains to discuss the cases w (V) & D4y (w), w (0) =
& Dyg. (w). In the first case any control u,holding a position on the surface R©) (w)=
= (), is antiparallel to vector y and preserves the quantity ys |z| / |y| equal to the
projection of vector £ onto the normal to vector y, lying in the plane containing the
vectors &, y. In the second case this projection equals zero, but the admissible control

== — my preserves the inequality y, >> 0 and the quantity |x| >> O is not diminished,
Thus, an admissible control, preserving the equality R (w) = 0, cannot lead a tra-
jectory onto M .On the other hand, according to (3, 3), any control u 5= — my (m>>()
leads the trajectory into the region D, ,, (w), whence it is also impossible to go onto
M .The proof of Theorem 3 is complete, Let us discuss the possibilities of the second
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player in the region D) ©) (i),
Lemma 8,1 contains three assertions,
3.1.1. Any impulse control p - v § preserves the inclusion w = D),
3.1, 2, The estimates

],(1), (0) (u (z)) < p(l), o) (,,.) (3'4)
are valid, becoming equalities only by the controls
P O () ) == — kO () 8 — 1V () 1,

On<tv, we OO O g (Y )2 01

/19)’ 0y -A(l), () Z(l), (0)’ /LF)‘I)' o Y l(l), (m’ l(\), (n) / 0

P, (©) (w, n) = n(Sjy,, 0n<v, we= E(l), (1) Hm, (O Ul

3.1, 3. The equalities
/z&l)’ © () == /l(xl)' (m (u‘(:’), /1‘()”’ 0 () =- /1_(&”‘ ©) (u'm) for w2 MW

Yy = y.f"’) 0 for wes W (:3.9)

are valid for v = p) (0)

Proof, We carmy it out only for the case k = 1, w & ¢V The remaining cases
can be considered analogously, By ¢"] (i, p'V" ")) > 0 we denote the partial derivative
of the function ¢, (w, p) obtained after the substitution p = y, -~ 4 into the function
¢ (w, A) ; note that (p[;’] > 0 is strictly positive for RY (w) > 0 We restrict ourselves
only to the subcase RW (w) > 0 and we start to vary v = v;0 from zero, Then the root
variation §p'') = pM(w®) — pV (w) changes, for small | v, |, in accordance with the
equation

(p!*"'] (o, pM) OpQ) = — [ vi| — h(;) (wyv, — /Lél) (1) Vi + 0@, 1m0 (3.6)
The sum of the first-dimension terms are strictly negative for v;8 ey (n, w). This
sum vanishes only for v = v'* (n, w), but here it is easily verified that the quantity
O (w, | v1]) also vanishes, Let the vector v; be finite and satisfy the relations

oD@ 0 (0, vye O for 001

Let us assume to the contrary that §pV) (w, v;) > 0. From the relation v, = v'*» ©and
from estimate (3, 6) follows the bound §p'* (w, Bvy) <C Ofor sufficiently small 6. The
latter bound, together with the contrary assumption, implies the existence of a number
0 < 61 <1 such that §p¥ (W' (w, 9; vy), ABv,) > 0 for any sufficiently small 40 > 0.
This inequality contradicts estimate (3, 6) applied at the point w'? (w, 0; v;). Thus, we
have proven estimate (3,4) and the first part of assertion 3,1.2, For #'1> 0 the inclusion
w® & DW is a consequence of the presence of the root AV () = pV) (@) — 4@
This proves assertion 3,1.1, Equality (3, 5) is verified by a substitution, The proof of
Lemma 3,1 is complete,

Lemma 3, 2 contains two assertions,

3.2.1. Any impulse control u = 8, preserving the inclusion w1 = D), W)
cannot violate the estimates

pL- O (D) = p), O () (3.7)

which become strict equalities only for
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wl® O} (@, r)y =rug (W, k=1,0), 0<r<1
3.2,2. The controls y (1), (M} (w2, r) preserve the quantities
1), (0) ¢, (2) (1), .
h;, w®) = pP© (@Y (@, > ON (0, )

(1), (0) (2) 1), .
hf" (w ) = h((j) (0) (w(2 1) (w(2), @ (o)) (w(Z)’ )
for u.(2) = C(l)» (0) (ZL’(2)).
The proof is analogous to that of Lemma 3,1,
In summary, Lemmas 3,1 and 3, 2 establish the equality

max, ming ¢y [pW: © (w V) — pW: O ()] =0 (3.8)
where the minimum is sought on all % (w) which are impulsive and which preserve the
inclusion (2.1 = D), (0 while the maximum, on all admissible controls

v =0, v— v >0
4, Thus, the control
Ug) (w('l)) — u(l). () (20(2)) — }\‘(1), (0) (10(2)) 6]1 _ yff)@]'s, w(2) = C(l), (0) (4_ 1)
has been formed in the region Ct:). (9, If however, at the position w & E1), (0)the second

player uses a finite control v (W), then wW® = w, and a natural generalization of the
impulse control Uy (wt®) in this case is the control

u @, vy = ud O (w, v) j. — Vajs — Vel (4.2)
where ufll)’ ©) (w, v) are the smallest roots of the equation
g/ 2 P - /
|v|—Vv(iz‘%"v‘r"“t‘uaz""ya(vx“%‘ul)g1:0 (4.3)
Equation (4, 3) admits of the obvious roots u,, y = U,, ; = — VU, and, furthermore, of

the root Uy, 3 = 2 (v, 82— IUlyaE) g '— v, when vl ¢ — 2y,Ev, —2 |v| y.2 >0
and the root Uy, 2 = Uwhen vy = v, = 0. v, << 0.

5. Let us begin the analysis of the case k == 1 and, unless we stipulate otherwise,
we shall consider only this case, We introduce the notation

0 (w) = pW () |z, L =E|z[? (5.1)
Za:!/alxl-17 28 =y31$|_1
20 @) (w®) = pM (wy |z |7, L@ = E@ |z |t
= yPlel, D=yl

1

0< Y (w(‘z)) — {(:‘22))2 _ (3(1) (2) (w(2)) __ ZS))Z} 2

The function T (z(1? (w)) increases strictly monotonically with respect to the argument
zU (w).However, according to Lemma 3,1 (Lemma 3, 2) the second (first) player cannot
increase (decrease) the quantity z(t) (w) and the function 7'M (z(V) (w)) by means of
impulse controls, As a corollary of this it is natural to examine the consequences of im-
pulse actions of the second and first players who at the initial instant have applied the

impulse controls
v (i, 0 n < V), W (@, 0 r<C 1) = rug (5.2)

and who for ¢ > 0 apply the finite controls u, v. It is not difficult to verify the validity
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of the equalities

C(2.1} — ; . (b(l) . 1)(2)) — ; —a, Zé?' v Zy - al, ((l’) (3%)
20V = 23 4 ah, (w), 0<<V® =ny jzl<<v/|z| (5.4)

2 () = 5 (w® 1))
B () = ha @),y W) = hy (W) (5.5)
In formulas (5, 3) we can consider the case
wes O [y’ + (A0 @) >0 0 (2P () > 0] (5.6)

From (2, 2), (5.1) = (5,4) it follows that the function 0 (w) = z(1 (2 U (w2 D) is
the smallest root of the equation

e — Vi D (=)™ P — YFFT =0 (5.7

As a consequence of system (4,1), for the variables {, z,, 23 we can obtain the diff-
erential equations

§.=-§ZJ~[711{+‘U15, ‘:a.z“—’l"za2+z{32+u1a+vla (58)
Zp = — 22,3+ Upp vy, Uy =ulzlt, vy =vz?
The right derivative of the function W (z(V (w(2 D)} along the motion starting from
the position w(21) has the form
[T(n (Z(l) (w(2, l)))]' — (dT(l) /le) [z(l) (w(?..l))]'
(51 (e D) = Py (D) -+ P, (062, u) 4 Py (e, p)

where Py {wf® ) is a combination of terms not depending on the controls, Py (W@ 1, u)
of terms depending only on u,while Pg{w 2 1, p) of terms depending only on v ,To

compute the indicated quantities we differentiate Eq, (5, 5) with respect to time, and
we obtain the equation

(2D @™ D) 8 (w) = (= L) —ha () (&) = hg () B D) (5.9)
B (W) = | — ki (w) — 2V (w) [ V EO @) + 1] >0 (5.10)
The estimate (5,10) is a consequence of the assumption RV (w) > 0. The equality
Py = (8 (o)) [H (w) + (Cha + 24) a) (5.11)
H (W) = {2q — ho (3% — 2.> — 1) — 2032,23

is a corollary of (5, 9), (5,10} and (5,6), Simple calculations allow us to establish the

estimate Chy + 2, <0 (5,12)
while arguments analogous to those in the proofs of Lemmas 3,1, 3,2 establish the
equality max, min, o [Py (W Y, u) + Py (w V, v)] =0 (5.13)
From (5,12) follows the estimate

Py (w, iy w®), v O0<n<v, w)) <P, (w2 1) (5.14)

w1V = @ (w, AR v(l))
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8., Theorem 6, The equalities

T (w°, v°) = T {{ug @P), u® @ (@w, v)], v @ (w, n)] = TV @ D@ ()) (6.1)

[ty (W), ut O (w, v)] = u® (w, v) (6.2)
oM O (0, n) = v° (W)
MyDY O =W w), Day,ww=W,w) (6.3)

follow from the inclusions w & D) @ {w), From (6, 1) it follows that the controls
[ty (0 @] p). ©) solve Problem 1 in the regions DW: (® (w) with optimal times
T,  (z(1. ® (w))}, while in the remaining part of the position space the second player
can solve Problem 2 (of escape),

Proof, Once again we restrict ourselves to the case ¥ = 1, Because the function
T (zY (w)) is monotonic with respect to z!) (w) and from Lemmas 3,1, 3,2, there
follows the equality

max, min,,, AT0 = AT (w, vV, s =0 {6.4)
From {5,13) and (5, 14) follows the equality
max, min,, (T®)" = T (W, u,, o0y = —1 {6.5)

Equalities (6.4), (6.5) prove the equalities {6,1), (6,2) and the inclusion DV @ &
& 1V° (w).Equalities (6, 3) follow from the latter inclusion, from inclusion (3,4) and from

the equality M U D™ Dy, (o, = W. The proof of Theorem 6 is complete, The
case k = 0 can be treated analogously,

o, (2],

Alw') o

21

e

o - 12,77

g J

Fig. 1.

The optimal motion is shown in the Fig, 1, The vectors (0, 4) = R and (0, B) =y
represent the initial position and velocity, The vector 'Y = (B, B'*)in sum with the
vector y forms the vector 4 = (4, B'Y) — the result of the second player's optimal
actions, The vector (B'¥, B»V) = u'") in sum with the vector y» leads to the vector
¥'®Y directed along the vector (0, 4). After this the optimal motion starts from the pos-
ition w'*!" and takes place along the fixed straight line (¢, a) during a time T'V.
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We consider the problem of the equivalence of a certain system of ordinary diff-
erential equations to a system of Lagrange equations, Wherever we do not ex -
pressly say so, we have in mind sationary nonholonomic Chaplygin systems with
linear constraints, The equations of motion of non-holonomic systems in the
Routh form, Chaplygin in appearance, differ from the Lagrange equations of the
second kind in the presence of additional terms (constraint reactions, nonholo-
nomic terms), This fact hinders the extension of integration methods of equations
of motion of helonomic systems to nonholonomic ones, The few attempts [1, 2]
to seek general methods for integrating the equations of nonholonomic mechanics
were reduced to the transformation of the equations of motion to Lagrange form
[3]. The equations of motion of nonholonomic systems have the form of Lagrange
equations [1, 4] only in exceptional cases,

The problem of determining the conditions which guarantee the equivalence
of a given system of differential equations
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where ¢ is a certain function of 'y -, 93’y @1, ..., Qn, ¢,is a familiar one,

Necessary and sufficient conditions (the Helmholtz conditions) were obtained in

[5 - 7] on whose basis we can determine from the appearance of Eqgs, (0,1) whe-
ther each of these equations individually is a Lagrange equation relative to the
function 0 called the Helmholtz kinetic potential, It should be noted that the
Helmbholtz conditions applied by Chaplygin are usually not fulfilled for Routh
equations [8, 9], nevertheless, in some cases, by combining these equations

they can be replaced by an equivalent Lagrange system [8], A theorem was proven
in [10] that the equations of motion of a mechanical system with linear nonint-
egrable constraints
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